Ch ’u ’ong 6
L
´
Y THUY
´
ˆ
ET T
’
U
’
ONG QUAN V
`
A H
`
AM H
`
ˆ
OI QUI
1. M
´
ˆ
OI QUAN H
ˆ
E
.
GI
˜
’
UA HAI D
¯
A
.
I L
’
U
.
’
ONG NG
˜
ˆ
AU NHI
ˆ
EN
Khi kh
’
ao s´at hai ¯da
.
i l
’
u
’
o
.
ng ng
˜
ˆau nhiˆen X, Y ta th
´
ˆay gi
˜
’
ua ch´ung c´o th
’
ˆe c´o mˆo
.
t s
´
ˆo
quan hˆe
.
sau:
i) X v`a Y ¯dˆo
.
c lˆa
.
p v
´
’
oi nhau, t
´
’
uc l`a viˆe
.
c nhˆa
.
n gi´a tri
.
c
’
ua ¯da
.
i l
’
u
’
o
.
ng ng
˜
ˆau nhiˆen n`ay
khˆong
’
anh h
’
u
’
’
ong ¯d
´
ˆen viˆe
.
c nhˆa
.
n gi´a tri
.
c
’
ua ¯da
.
i l
’
u
’
o
.
ng ng
˜
ˆau nhiˆen kia.
ii) X v`a Y c´o m
´
ˆoi phu
.
thuˆo
.
c h`am s
´
ˆo Y = ϕ(X).
iii) X v`a Y c´o s
’
u
.
phu
.
thuˆo
.
c t
’
u
’
ong quan v`a phu
.
thuˆo
.
c khˆong t
’
u
’
ong quan.
2. H
ˆ
E
.
S
´
ˆ
O T
’
U
’
ONG QUAN
2.1 Moment t
’
u
’
ong quan (Covarian)
✷ D
¯
i
.
nh ngh
˜
ia 1
* Moment t
’
u
’
ong quan (hiˆe
.
p ph
’
u
’
ong sai) c
’
ua hai ¯da
.
i l
’
u
’
o
.
ng ng
˜
ˆau nhiˆen X v`a Y, k´ı
hiˆe
.
u cov(X, Y ) hay µ
XY
, l`a s
´
ˆo ¯d
’
u
’
o
.
c x´ac ¯di
.
nh nh
’
u sau
cov(X, Y ) = E{[X − E(X)][Y − E(Y )]}
* N
´
ˆeu cov(X, Y ) = 0 th`ı ta n´oi hai ¯da
.
i l
’
u
’
o
.
ng ng
˜
ˆau nhiˆen X v`a Y khˆong t
’
u
’
ong quan.
Ch´u ´y
cov(X, Y ) = E(XY ) − E(X).E(Y )
Thˆa
.
t vˆa
.
y, ta c´o
cov(XY ) = E{X.Y − X.E(Y ) − Y.E(X) + E(X).E(Y )
= E(XY ) − E(X).E(Y ) − E(X).E(Y ) + E(X).E(Y )
= E(XY ) − E(X).E(Y )
99
100 Ch ’u ’ong 6. L´y thuy
´
ˆet t
’
u
’
ong quan v`a h`am h
`
ˆoi qui
⊕ Nhˆa
.
n x´et 1
* N
´
ˆeu (X, Y ) r
`
’
oi ra
.
c th`ı
cov(X, Y ) =
n
i=1
m
j=1
x
i
y
j
P (x
i
, y
j
) − E(X)E(Y )
* N
´
ˆeu (X, Y ) liˆen tu
.
c th`ı
cov(X, Y ) =
+∞
−∞
+∞
−∞
xyf(x, y)dxdy − E(X)E(Y )
⊕ Nhˆa
.
n x´et
i) N
´
ˆeu X v`a Y l`a hai ¯da
.
i l
’
u
’
o
.
ng ng
˜
ˆau nhiˆen ¯dˆo
.
c lˆa
.
p th`ı ch´ung khˆong t
’
u
’
ong quan.
ii) Cov(X,X)=Var(X).
2.2 Hˆe
.
s
´
ˆo t
’
u
’
ong quan
✷ D
¯
i
.
nh ngh
˜
ia 2 Hˆe
.
s
´
ˆo t
’
u
’
ong quan c
’
ua hai ¯da
.
i l
’
u
’
o
.
ng ng
˜
ˆau nhiˆen X v`a Y, k´ı hiˆe
.
u r
XY
,
l`a s
´
ˆo ¯d
’
u
’
o
.
c x´ac ¯di
.
nh nh
’
u sau
r
XY
=
cov(X, Y )
S
X
.S
Y
v
´
’
oi S
x
, S
Y
l`a ¯dˆo
.
lˆe
.
ch tiˆeu chu
’
ˆan c
’
ua X, Y .
•
´
Y ngh
˜
ia c
’
ua hˆe
.
s
´
ˆo t
’
u
’
ong quan
Hˆe
.
s
´
ˆo t
’
u
’
ong quan ¯do m
´
’
uc ¯dˆo
.
phu
.
thuˆo
.
c tuy
´
ˆen t´ınh gi
˜
’
ua X v`a Y . Khi |r
XY
| c`ang
g
`
ˆan 1 th`ı m
´
ˆoi quan hˆe
.
tuy
´
ˆen t´ınh c`ang ch
˘
a
.
t, khi |r
XY
| c`ang g
`
ˆan 0 th`ı quan hˆe
.
tuy
´
ˆen
t´ınh c`ang ”l
’
ong l
’
eo”.
2.3
’
U
´
’
oc l
’
u
’
o
.
ng hˆe
.
s
´
ˆo t
’
u
’
ong quan
Lˆa
.
p m
˜
ˆau ng
˜
ˆau nhiˆen W
XY
= [(X
1
, Y
1
), (X
2
, Y
2
) . . . (X
n
, Y
n
)].
D
¯
’
ˆe
’
u
´
’
oc l
’
u
’
o
.
ng hˆe
.
s
´
ˆo t
’
u
’
ong quan r
XY
=
E(XY ) − E(X).E(Y )
S
X
.S
Y
ta d`ung th
´
ˆong kˆe
R =
XY − X.Y
S
X
.S
Y
trong ¯d´o
X =
1
n
n
i=1
X
i
, Y =
1
n
n
i=1
Y
i
, XY =
1
n
n
i=1
X
i
Y
i
S
2
X
=
1
n
n
i=1
(X
i
− X)
2
, S
2
Y
=
1
n
n
i=1
(Y
i
− Y )
2
2. Hˆe s
´
ˆo t
’
u
’
ong quan 101
V
´
’
oi m
˜
ˆau cu
.
th
’
ˆe, ta t´ınh ¯d
’
u
’
o
.
c gi´a tri
.
c
’
ua R l`a
r
XY
=
xy − x.y
s
x
.s
y
trong ¯d´o
x =
1
n
n
i=1
x
i
, y =
1
n
n
i=1
y
i
, xy =
1
n
n
i=1
x
i
y
i
s
2
x
=
1
n
n
i=1
x
2
i
− (x)
2
, s
2
y
=
1
n
n
i=1
y
2
i
− (y)
2
Ta c´o
r
XY
=
n
xy − (
x)(
y)
n(
x
2
) − (
x)
2
.
n(
y
2
) − (
y)
2
2.4 T´ınh ch
´
ˆat c
’
ua hˆe
.
s
´
ˆo t
’
u
’
ong quan
Hˆe
.
s
´
ˆo t
’
u
’
ong quan r =
xy − x.y
s
x
.s
y
¯d
’
u
’
o
.
c d`ung ¯d
’
ˆe ¯d´anh gi´a m
´
’
uc ¯dˆo
.
ch
˘
a
.
t ch
’
e c
’
ua s
’
u
.
phu
.
thuˆo
.
c t
’
u
’
ong quan tuy
´
ˆen t´ınh gi
˜
’
ua hai ¯da
.
i l
’
u
’
o
.
ng ng
˜
ˆau nhiˆen X v`a Y , n´o c´o c´ac t´ınh
ch
´
ˆat sau ¯dˆay:
i) |r| ≤ 1.
ii) N
´
ˆeu |r| = 1 th`ı X v`a Y c´o quan hˆe
.
tuy
´
ˆen t´ınh.
iii) N
´
ˆer |r| c`ang l
´
’
on th`ı s
’
u
.
phu
.
thuˆo
.
c t
’
u
’
ong quan tuy
´
ˆen t´ınh gi
˜
’
ua X v`a Y c`ang ch
˘
a
.
t
ch
’
e.
iv) N
´
ˆeu |r| = 0 th`ı gi
˜
’
ua X v`a Y khˆong c´o phu
.
thuˆo
.
c tuy
´
ˆen t´ınh t
’
u
’
ong quan.
v) N
´
ˆeu r > 0 th`ı X v`a Y c´o t
’
u
’
ong quan thuˆa
.
n (X t
˘
ang th`ı Y t
˘
ang). N
´
ˆeu r < 0 th`ı
X v`a Y c´o t
’
u
’
ong quan nghi
.
ch (X gi
’
am th`ı Y gi
’
am).
• V´ı du
.
1 T
`
’
u s
´
ˆo liˆe
.
u ¯d
’
u
’
o
.
c cho b
’
’
oi b
’
ang sau, h˜ay x´ac ¯di
.
nh hˆe
.
s
´
ˆo t
’
u
’
ong quan c
’
ua Y v`a
X
X 1 3 4 6 8 9 11 14
Y 1 2 4 4 5 7 8 9
Gi
’
ai
Ta lˆa
.
p b
’
ang sau
102 Ch ’u ’ong 6. L´y thuy
´
ˆet t
’
u
’
ong quan v`a h`am h
`
ˆoi qui
x
i
y
i
x
2
i
x
i
y
i
y
2
i
1 1 1 1 1
3 2 9 6 4
4 4 16 16 16
6 4 36 24 16
8 5 64 40 25
9 7 81 63 49
11 8 121 88 64
14 9 196 126 81
x = 56
y = 40
x
2
= 524
xy = 364
y
2
= 256
Hˆe
.
s
´
ˆo t
’
u
’
ong quan c
’
ua X v`a Y l`a
r
XY
=
n
xy − (
x)(
y)
n(
x
2
) − (
x)
2
.
n(
y
2
) − (
y)
2
=
8.364 − (56).(40)
8.524 − (56)
2
.
8.256 − (40)
2
=
672
687, 81
= 0, 977
2.5 T
’
y s
´
ˆo t
’
u
’
ong quan
D
¯
’
ˆe ¯d´anh gi´a m
´
’
uc ¯dˆo
.
ch
˘
a
.
t ch
’
e c
’
ua s
’
u
.
phu
.
thuˆo
.
c t
’
u
’
ong quan phi tuy
´
ˆen, ng
’
u
`
’
oi ta d`ung
t
’
y s
´
ˆo t
’
u
’
ong quan:
η
Y/X
=
s
y
s
y
trong ¯d´o
s
y
=
1
n
n
i
.(y
x
i
− y)
2
; s
y
=
1
n
m
j
.(y
j
− y)
2
T
’
y s
´
ˆo t
’
u
’
ong quan c´o c´ac t´ınh ch
´
ˆat sau:
i) 0 ≤ η
Y/X
≤ 1.
ii) η
Y/X
= 0 khi v`a ch
’
i khi Y v`a X khˆong c´o phu
.
thuˆo
.
c t
’
u
’
ong quan.
iii) η
Y/X
= 1 khi v`a ch
’
i khi Y v`a X phu
.
thuˆo
.
c h`am s
´
ˆo.
iv) η
Y/X
≥ |r|.
N
´
ˆeu η
Y/X
= |r| th`ı s
’
u
.
phu
.
thuˆo
.
c t
’
u
’
ong quan c
’
ua Y v`a X c´o da
.
ng tuy
´
ˆen t´ınh.
2.6 Hˆe
.
s
´
ˆo x´ac ¯di
.
nh m
˜
ˆau
Trong th
´
ˆong kˆe, ¯d
’
ˆe ¯d´anh gi´a ch
´
ˆat l
’
u
’
o
.
ng c
’
ua mˆo h`ınh tuy
´
ˆen t´ınh ng
’
u
`
’
ot ta c`on x´et
hˆe
.
s
´
ˆo x´ac ¯di
.
nh m
˜
ˆau β = r
2
v
´
’
oi r l`a hˆe
.
s
´
ˆo t
’
u
’
ong quan. Ta c´o 0 ≤ β ≤ 1.
3. H
`
ˆoi qui 103
3. H
`
ˆ
OI QUI
3.1 K`y vo
.
ng c´o ¯di
`
ˆeu kiˆe
.
n
i) D
¯
a
.
i l
’
u
’
o
.
ng ng
˜
ˆau nhiˆen r
`
’
oi ra
.
c
* K`y vo
.
ng c´o ¯di
`
ˆeu kiˆe
.
n c
’
ua ¯da
.
i l
’
u
’
o
.
ng ng
˜
ˆau nhiˆen r
`
’
oi ra
.
c Y v
´
’
oi ¯di
`
ˆeu kiˆe
.
n X = x l`a
E(Y/x) =
m
j=1
y
j
P (X = x, Y = y
j
)
* T
’
u
’
ong t
’
u
.
, k`y vo
.
ng c´o ¯di
`
ˆeu kiˆe
.
n c
’
ua ¯da
.
i l
’
u
’
o
.
ng ng
˜
ˆau nhiˆen r
`
’
oi ra
.
c X v
´
’
oi ¯di
`
ˆeu kiˆe
.
n
Y = y l`a
E(X/y) =
n
i=1
x
i
P (X = x
i
, Y = y)
ii) D
¯
a
.
i l
’
u
’
o
.
ng ng
˜
ˆau nhiˆen liˆen tu
.
c
E(Y/x) =
+∞
−∞
yf(y/x)dy
E(X/y) =
+∞
−∞
xf(x/y)dx
trong ¯d´o
f(y/x) = f(x, y) v
´
’
oi x khˆong ¯d
’
ˆoi
f(x/y) = f(x, y) v
´
’
oi y khˆong ¯d
’
ˆoi
3.2 H`am h
`
ˆoi qui
* H`am h
`
ˆoi qui c
’
ua Y ¯d
´
ˆoi v
´
’
oi X l`a f(x) = E(Y/x).
* H`am h
`
ˆoi qui c
’
ua X ¯d
´
ˆoi v
´
’
oi Y l`a f(y) = E(X/y).
Trong th
’
u
.
c t
´
ˆe ta th
’
u
`
’
ong g
˘
a
.
p hai ¯da
.
i l
’
u
’
o
.
ng ng
˜
ˆau nhiˆen X, Y c´o m
´
ˆoi liˆen hˆe
.
v
´
’
oi nhau,
trong ¯d´o viˆe
.
c kh
’
ao s´at X th`ı d
˜
ˆe c`on kh
’
ao s´at Y th`ı kh´o h
’
on thˆa
.
m ch´ı khˆong th
’
ˆe kh
’
ao
s´at ¯d
’
u
’
o
.
c. Ng
’
u
`
’
oi ta mu
´
ˆon t`ım m
´
ˆoi liˆen hˆe
.
ϕ(X) n`ao ¯d´o gi
˜
’
ua X v`a Y ¯d
’
ˆe bi
´
ˆet X ta c´o th
’
ˆe
d
’
u
.
¯do´an ¯d
’
u
’
o
.
c Y .
Gi
’
a s
’
’
u bi
´
ˆet X, n
´
ˆeu d
’
u
.
¯do´an Y b
`
˘
ang ϕ(X) th`ı sai s
´
ˆo pha
.
m ph
’
ai l`a E[Y − ϕ(X)]
2
.
V
´
ˆan ¯d
`
ˆe ¯d
’
u
’
o
.
c ¯d
˘
a
.
t ra l`a t`ım ϕ(X) nh
’
u th
´
ˆe n`ao ¯d
’
ˆe E[Y − ϕ(X)]
2
l`a nh
’
o nh
´
ˆat.
Ta s˜e ch
´
’
ung minh khi cho
.
n ϕ(X) = E(Y /X) (v
´
’
oi ϕ(x) = E(Y /x)) th`ı E[Y − ϕ(X)]
2
s˜e nh
’
o nh
´
ˆat.
Thˆa
.
t vˆa
.
y, ta c´o
E[Y − ϕ(X)]
2
= E{([Y − E(Y/X)] + [E(Y/X) − ϕ(X)])
2
}
= E{[Y − E(Y/X)]
2
} + E{[E(Y/X) − ϕ(X)]
2
}
+2E{[Y − E(Y/X)][E(Y/X) − ϕ(X)]}
104 Ch ’u ’ong 6. L´y thuy
´
ˆet t
’
u
’
ong quan v`a h`am h
`
ˆoi qui
Ta th
´
ˆay E(Y/X) ch
’
i phu
.
thuˆo
.
c v`ao X nˆen c´o th
’
ˆe ¯d
˘
a
.
t T (X) = E(Y/X) − ϕ(X).
V`ı E[E(Y/X)T (X)] = E[Y T (X)] nˆen
2E[Y − E(Y/X)][E(Y/X) − ϕ(X)] = 2E{[Y − E(Y/X)]T (X)}
= 2E[Y T (X)] − 2E[E(Y/X)T (X)] = 0
Do ¯d´o
E{[Y − ϕ(X)]
2
} = E{[Y − E(Y/X)]
2
} + E{E(Y /X) − ϕ(X)]
2
nh
’
o nh
´
ˆat khi
E{[(Y/X) − ϕ(X)]
2
= 0
Ta ch
’
i c
`
ˆan cho
.
n
ϕ(X) = E(Y/X) (6.1)
Ph
’
u
’
ong tr`ınh (6.1) ¯d
’
u
’
o
.
c go
.
i l`a ph
’
u
’
ong tr`ınh t
’
u
’
ong quan hay ph
’
u
’
ong tr`ınh h
`
ˆoi qui.
3.3 X´ac ¯di
.
nh h`am h
`
ˆoi qui
a) Tr
’
u
`
’
ong h
’
o
.
p ´ıt s
´
ˆo liˆe
.
u (t
’
u
’
ong quan c
˘
a
.
p)
Gi
’
a s
’
’
u gi
˜
’
ua hai ¯da
.
i l
’
u
’
o
.
ng ng
˜
ˆau nhiˆen X v`a Y c´o t
’
u
’
ong quan tuy
´
ˆen t´ınh, t
´
’
uc l`a
E(Y/X) = AX + B.
D
’
u
.
a v`ao n c
˘
a
.
p gi´a tri
.
(x
1
, x
2
), (x
2
, y
2
), . . . , (x
n
, y
n
) c
’
ua (X, Y ) ta t`ım h`am
y
x
= y = ax + b (∗)
¯d
’
ˆe
’
u
´
’
oc l
’
u
’
o
.
ng h`am Y = AX + B.
(*) ¯d
’
u
’
o
.
c go
.
i l`a h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau.
V`ı c´ac c
˘
a
.
p gi´a tri
.
trˆen l`a tri
.
x
´
ˆap x
’
i c
’
ua x v`a y nˆen th
’
oa (*) mˆo
.
t c´ach x
´
ˆap x
’
i.
Do ¯d´o y
i
= ax
i
+ b + ε
i
hay ε
i
= y
i
− ax
i
− b.
Ta t`ım a, b sao cho c´ac sai s
´
ˆo ε
i
(i = 1, n) c´o tri
.
tuyˆe
.
t ¯d
´
ˆoi nh
’
o nh
´
ˆat hay h`am
S(a, b) =
n
i=1
(y
i
− ax
i
− b)
2
¯da
.
t c
’
u
.
c ti
’
ˆeu. Ph
’
u
’
ong ph´ap t`ım n`ay ¯d
’
u
’
o
.
c go
.
i l`a ph
’
u
’
ong ph´ap b`ınh ph
’
u
’
ong b´e nh
´
ˆat.
Ta th
´
ˆay S s˜e ¯da
.
t gi´a tri
.
nh
’
o nh
´
ˆat ta
.
i ¯di
’
ˆem d
`
’
ung th
’
oa m˜an
0 =
∂S
∂a
= −2
n
i=1
x
i
(y
i
− ax
i
− b)
0 =
∂S
∂b
= −2
n
i=1
(y
i
− ax
i
− b)
3. H
`
ˆoi qui 105
hay
n
i=1
x
2
i
.a +
n
i=1
x
i
.b =
n
i=1
x
i
y
i
n
i=1
x
i
.a + nb =
n
i=1
y
i
(6.2)
Hˆe
.
trˆen c´o ¯di
.
nh th
´
’
uc
D =
n
i=1
x
2
i
n
i=1
x
i
n
i=1
x
i
n
= n
n
i=1
x
2
i
−
n
i=1
x
i
2
V`ı c´ac x
i
kh´ac nhau nˆen theo b
´
ˆat ¯d
’
˘
ang th
´
’
uc Bunhiakovsky ta c´o (
n
i=1
x
i
)
2
<
n
n
i=1
x
2
i
. Do ¯d´o D > 0. Suy ra hˆe
.
trˆen c´o nghiˆe
.
m duy nh
´
ˆat
a =
n
n
i=1
x
i
y
i
− (
n
i=1
x
i
) (
n
i=1
y
i
)
n
n
i=1
x
2
i
− (
n
i=1
x
i
)
2
b =
(
n
i=1
x
2
i
) (
n
i=1
y
i
) − (
n
i=1
x
i
) (
n
i=1
x
i
y
i
)
n
n
i=1
x
2
i
− (
n
i=1
x
i
)
2
N
´
ˆeu ¯d
˘
a
.
t
x =
1
n
.
n
i=1
x
i
, y =
1
n
.
n
i=1
y
i
, xy =
1
n
.
n
i=1
x
i
y
i
, x
2
=
1
n
n
i=1
x
2
i
th`ı nghiˆe
.
m c
’
ua hˆe
.
c´o th
’
ˆe vi
´
ˆet la
.
i d
’
u
´
’
oi da
.
ng
a =
xy − x.y
x
2
− (x)
2
=
xy − x.y
s
2
x
; b =
x
2
.y − x.xy
x
2
− (x)
2
=
x
2
.y − x.xy
s
2
x
T´om la
.
i, ta c´o th
’
ˆe t`ım h`am y
x
= ax + b t
`
’
u c´ac cˆong th
´
’
uc
a =
xy − x.y
s
2
x
=
n(
xy) − (
x)(
y)
n(
x
2
) − (
x)
2
b = y − a.x
Ch´u ´y
-bb-error =
D
¯
’
u
`
’
ong g
´
ˆap kh´uc n
´
ˆoi c´ac ¯di
’
ˆem (x
1
, y
1
),
(x
2
, y
2
) , . . . , (x
n
, y
n
) ¯d
’
u
’
o
.
c go
.
i l`a ¯d
’
u
`
’
ong h
`
ˆoi
qui th
’
u
.
c nghiˆe
.
m.
D
¯
’
u
`
’
ong th
’
˘
ang y = ax + b nhˆa
.
n ¯d
’
u
’
o
.
c b
’
’
oi
cˆong th
´
’
uc b`ınh ph
’
u
’
ong b´e nh
´
ˆat khˆong ¯di qua
¯d
’
u
’
o
.
c t
´
ˆat c
’
a c´ac ¯di
’
ˆem nh
’
ung l`a ¯d
’
u
`
’
ong th
’
˘
ang
”g
`
ˆan” c´ac ¯di
’
ˆem ¯d´o nh
´
ˆat ¯d
’
u
’
o
.
c go
.
i l`a ¯d
’
u
`
’
ong
th
’
˘
ang h
`
ˆoi qui v`a th
’
u tu
.
c l`am th´ıch h
’
o
.
p ¯d
’
u
`
’
ong
th
’
˘
ang thˆong qua c´ac ¯di
’
ˆem d
˜
’
u liˆe
.
u cho tr
’
u
´
’
oc
¯d
’
u
’
o
.
c go
.
i l`a h
`
ˆoi qui tuy
´
ˆen t´ınh.
Theo trˆen ta c´o b = y − a.x, do ¯d´o ¯di
’
ˆem (x, y) luˆon n
`
˘
am trˆen ¯d
’
u
`
’
ong th
’
˘
ang h
`
ˆoi qui.
106 Ch ’u ’ong 6. L´y thuy
´
ˆet t
’
u
’
ong quan v`a h`am h
`
ˆoi qui
• V´ı du
.
2
’
U
´
’
oc l
’
u
’
o
.
ng h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau x
’
ua Y theo X trˆen c
’
o s
’
’
o b
’
ang t
’
u
’
ong
quan c
˘
a
.
p sau
X 15 38 23 16 16 13 20 24
Y 145 228 150 130 160 114 142 265
Gi
’
ai
Ta lˆa
.
p b
’
ang sau
x
i
y
i
x
2
i
x
i
y
i
15 145 225 3175
38 228 1444 8664
23 150 529 3450
16 130 256 2080
16 160 256 2560
13 114 169 1482
20 142 400 2840
24 265 576 6360
x = 165
y = 1334
x
2
= 3855
xy = 29611
Ta c´o
a =
n(
xy) − (
x)(
y)
n(
x
2
) − (
x)
2
=
8(19611) − (165)(1334)
8(3855)(165)
2
=
16778
3615
= 4, 64
b = y − ax =
1334
8
−
16778
3615
165
8
= 71
Vˆa
.
y h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau l`a y
x
= 4, 64x + 71.
• V´ı du
.
3 D
¯
ˆo
.
’
ˆam c
’
ua khˆong kh´ı
’
anh h
’
u
’
’
ong ¯d
´
ˆen s
’
u
.
bay h
’
oi c
’
ua n
’
u
´
’
oc trong s
’
on khi
phun ra. Ng
’
u
`
’
oi ta ti
´
ˆen h`anh nghiˆen c
´
’
uu m
´
ˆoi liˆen hˆe
.
gi
˜
’
ua ¯dˆo
.
’
ˆam c
’
ua khˆong kh´ı X v`a ¯dˆo
.
bay h
’
oi Y . S
’
u
.
hi
’
ˆeu bi
´
ˆet v
`
ˆe m
´
ˆoi quan hˆe
.
n`ay s˜e gi´up ta ti
´
ˆet kiˆe
.
m ¯d
’
u
’
o
.
c l
’
u
’
o
.
ng s
’
on b
`
˘
ang
c´ach ch
’
inh s´ung phun s
’
on mˆo
.
t c´ach th´ıch h
’
o
.
p. Ti
´
ˆen h`anh 25 quan s´at ta ¯d
’
u
’
o
.
c c´ac s
´
ˆo
liˆe
.
u sau:
3. H
`
ˆoi qui 107
Quan s´at D
¯
ˆo
.
’
ˆam D
¯
ˆo
.
bay h
’
oi Quan s´at D
¯
ˆo
.
’
ˆam D
¯
ˆo
.
bay h
’
oi
(%) (%) (%) (%)
1 35,3 11,0 14 39,1 9,6
2 29,7 11,1 15 46,8 10,9
3 30,8 12,5 16 48,5 9,6
4 58,8 8,4 17 59,3 10,1
5 61,4 9,3 18 70,0 8,1
6 71,3 8,7 19 70,0 6,8
7 74,4 6,4 20 74,4 8,9
8 76,7 8,5 21 72,1 7,7
9 70,7 7,8 22 58,1 8,5
10 57,5 9,1 23 44,6 8,9
11 46,4 8,2 24 33,4 10,4
12 28,9 12,2 25 28,6 11,1
13 28,1 11,9
H˜ay t`ım h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau y
x
= ax + b.
Gi
’
ai
Ta c´o
n = 25
x = 1314, 9
y = 235, 7
x
2
= 76308, 53
y
2
= 2286, 07
xy = 11824, 44
Do ¯d´o
a =
n(
xy) − (
x)(
y)
n(
x
2
) − (
x)
2
=
25 × 11824, 44 − (1314, 9 × 235, 7)
25 × 76308, 53 − (1314, 9)
2
= −0, 08
b = y − ax = 9, 43 − (−0, 08) × 52, 6 = 13, 64
Vˆa
.
y h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau l`a y
x
= −0, 08x + 13, 64
b) Tr
’
u
`
’
ong h
’
o
.
p nhi
`
ˆeu s
´
ˆo liˆe
.
u (t
’
u
’
ong quan b
’
ang)
Gi
’
a s
’
’
u
X nhˆa
.
n c´ac gi´a tri
.
x
i
v
´
’
oi t
`
ˆan su
´
ˆat n
i
i = 1, k,
Y nhˆa
.
n c´ac gi´a tri
.
y
j
v
´
’
oi t
`
ˆan su
´
ˆat m
j
j = 1, h,
XY nhˆa
.
n c´ac gi´a tri
.
x
i
y
j
v
´
’
oi t
`
ˆan su
´
ˆat n
ij
i = 1, k, j = 1, h,
Ta t`ım h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau y
x
= ax + b trong tr
’
u
`
’
ong h
’
o
.
p c´o nhi
`
ˆeu s
´
ˆo liˆe
.
u. Theo
(6.2) ta c´o
108 Ch ’u ’ong 6. L´y thuy
´
ˆet t
’
u
’
ong quan v`a h`am h
`
ˆoi qui
k
i=1
n
i
x
2
i
.a +
k
i=1
n
i
x
i
.b =
k
i=1
h
j=1
n
ij
x
i
y
j
k
i=1
n
i
x
i
.a + nb =
h
j=1
m
j
y
j
(6.3)
Thay
k
i=1
n
i
x
i
= nx,
h
j=1
m
j
y
j
= ny,
k
i=1
n
i
x
2
i
= nx
2
,
h
j=1
m
j
y
2
j
= ny
2
,
k
i=1
h
j=1
n
ij
x
i
y
j
= nxy v`ao (6.3) ta ¯d
’
u
’
o
.
c
x
2
.a + x.b = xy (i)
x.a + nb = y (ii)
T
`
’
u (ii) ta c´o b = y − a.x
Thay b v`ao y
x
= ax + b ta suy ra
y
x
− y = a(x − x) (6.4)
Ta t`ım a b
’
’
oi
a =
k
i=1
h
j=1
n
ij
x
i
y
j
− (
k
i=1
n
i
x
i
)(
h
j=1
m
j
y
j
)
n
k
i=1
n
i
x
2
i
− (
k
i=1
n
i
x
i
)
2
=
n
2
xy − nx.ny
n.nx
2
− (nx)
2
=
xy − x.y
x
2
− (x)
2
=
xy − x.y
s
2
x
T´om la
.
i, ta t`ım h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau y
x
= ax + b v
´
’
oi a =
xy − x.y
s
2
x
, b = y − ax .
Ch´u ´y
i) Ta bi
´
ˆet hˆe
.
s
´
ˆo t
’
u
’
ong quan r
XY
=
xy − xy
s
x
.s
y
nˆen a = r
XY
s
y
s
x
Thay a v`ao (6.4) ta c´o
y
x
− y = r
XY
s
y
s
x
(x − x)
hay
y
x
− y
s
y
= r
XY
(x − x)
s
x
T
`
’
u ph
’
u
’
ong tr`ınh n`ay ta c´o th
’
ˆe suy ra ph
’
u
’
ong tr`ınh h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau y
x
= ax+b
mˆo
.
t c´ach thuˆa
.
n l
’
o
.
i h
’
on v`ı thˆong qua viˆe
.
c t`ım r
XY
ta ¯d˜a t´ınh s
x
, s
y
.
ii) Khi c´ac gi´a tri
.
c
’
ua X, Y kh´a l
´
’
on, ta c´o th
’
ˆe d`ung ph´ep ¯d
’
ˆoi bi
´
ˆen
u
i
=
x
i
− x
0
h
x
(∀i = 1, k); v
j
=
y
j
− y
0
h
y
(∀j = 1, h)
3. H
`
ˆoi qui 109
trong ¯d´o
* x
0
, y
0
l`a nh
˜
’
ung gi´a tri
.
t`uy ´y (th
’
u
`
’
ong cho
.
n x
0
, y
0
l`a gi´a tri
.
c
’
ua X, Y
´
’
ung v
´
’
oi t
`
ˆan s
´
ˆo
n
ij
l
´
’
on nh
´
ˆat trong b
’
ang t
’
u
’
ong quan th
’
u
.
c nghiˆe
.
m),
* h
x
, h
y
l`a c´ac gi´a tri
.
t`uy ´y (th
’
u
`
’
ong cho
.
n h
x
, h
y
l`a kho
’
ang c´ach c´ac gi´a tri
.
k
´
ˆe ti
´
ˆep
nhau c
’
ua X, Y).
Lˆa
.
p b
’
ang t
’
u
’
ong quan ¯d
´
ˆoi v
´
’
oi c´ac bi
´
ˆen m
´
’
oi U, V v`a t´ınh to´an c´ac gi´a tri
.
c
`
ˆan thi
´
ˆet ta
t`ım ¯d
’
u
’
o
.
c h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau
v
u
= a
0
.u + b
0
trong ¯d´o
a
0
=
uv − u.v
s
2
u
, b
0
= v − a
0
.u
Khi ¯d´o ta suy ra h`am y
x
= ax + b v
´
’
oi a, b ¯d
’
u
’
o
.
c t`ım b
’
’
oi cˆong th
´
’
uc
a = a
0
h
y
h
x
, b = y
0
+ b
0
.h
y
− a
0
.
h
y
h
x
.x
0
• V´ı du
.
4 X´ac ¯di
.
nh hˆe
.
s
´
ˆo t
’
u
’
ong quan v`a h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau y
x
= ax + b c
’
ua
c´ac ¯da
.
i l
’
u
’
ong ng
˜
ˆau nhiˆen X v`a Y cho b
’
’
oi b
’
ang t
’
u
’
ong quan th
’
u
.
c nghiˆe
.
m sau:
X 1 2 3
Y
10 20
20 30 1
30 1 48
Gi
’
ai
Ta lˆa
.
p b
’
ang sau
X 1 2 3 m
j
m
j
y
j
m
j
y
2
j
Y
10 200 20 200 2000
|20
20 1200 60 31 620 12400
|30 |1
30 60 4320 49 1470 44100
|1 |48
n
i
20 31 49 n=100
y = 2290
y
2
= 58500
n
i
x
i
20 62 147
x = 229
n
i
x
2
i
20 124 441
x
2
= 585
xy = 5840
110 Ch ’u ’ong 6. L´y thuy
´
ˆet t
’
u
’
ong quan v`a h`am h
`
ˆoi qui
xy = 200 + 1200 + 60 + 60 + 4320 = 5840
Ph
`
ˆan trˆen g´oc tr´ai c
’
ua ˆo ghi c´ac t´ıch n
ij
x
i
y
j
. Ta c´o
x =
229
100
= 2, 29; y =
2290
100
= 22, 9;
x
2
=
585
100
= 5, 58; y
2
=
58500
100
= 585 xy =
5840
100
= 58, 4;
s
2
x
= x
2
− (x)
2
= 5, 85 − (2, 29)
2
≈ 0, 6059 =⇒ s
x
≈ 0, 78
s
y
=
y
2
− (y)
2
=
585 − (22, 9)
2
≈ 7, 78
Do ¯d´o
a =
xy − x.y
s
2
x
=
58, 4 − 2, 29 × 22, 9
0, 6059
= 9, 835
b = y − a.x = 22, 9 − 9, 835 × 2, 29 = 0, 378
H`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau l`a y
x
= 9, 835x + 0, 378
Hˆe
.
s
´
ˆo t
’
u
’
ong quan l`a
r
xy
=
xy − x.y
s
x
.s
y
=
58, 4 − 2, 29 × 22, 9
0, 78 × 7, 78
≈ 0, 982
4. B
`
AI T
ˆ
A
.
P
1. Cho c´ac gi´a tri
.
quan s´at c
’
ua hai ¯da
.
i l
’
u
’
o
.
ng ng
˜
ˆau nhiˆen X v`a Y
’
’
o b
’
ang sau:
X 5 10 10 10 15 15 15 20 20 20
Y 20 20 30 30 30 40 50 50 60 60
Gi
’
a s
’
’
u X v`a Y c´o s
’
u
.
phu
.
thuˆo
.
c t
’
u
’
ong quan tuy
´
ˆen t´ınh. T`ım h`am h
`
ˆoi qui tuy
´
ˆen
t´ınh m
˜
ˆau: y
x
= ax + b.
2. Ng
’
u
`
’
oi ta ¯do chi
`
ˆeu d`ai vˆa
.
t ¯d´uc v`a khuˆon th`ı th
´
ˆay ch´ung lˆe
.
ch kh
’
oi qui ¯di
.
nh nh
’
usau:
X 0.90 1,22 1,32 0,77 1,30 1,20 1,32 0,95 0,45 1,30 1,20
Y -0,30 0,10 0,70 -0,28 0,25 0,02 0,37 -0,70 0,55 0,35 0,32
Trong ¯d´o X, Y l`a c´ac ¯dˆo
.
lˆe
.
ch.
X´ac ¯di
.
nh hˆe
.
s
´
ˆo t
’
u
’
ong quan.
3. S
´
ˆo liˆe
.
u th
´
ˆong kˆe nh
`
˘
am nghiˆen c
´
’
uu quan hˆe
.
gi
˜
’
ua t
’
ˆong s
’
an ph
’
ˆam nˆong nghiˆe
.
p Y v
´
’
oi
t
’
ˆong gi´a tri
.
t`ai s
’
an c
´
ˆo ¯di
.
nh X c
’
ua 10 nˆong tra
.
i (t´ınh trˆen 100 ha) nh
’
u sau:
4. B`ai t
.
ˆap 111
X 11,3 12,9 13,6 16,8 18,8 20,0 22,2 23,7 26,6 27,5
Y 13,2 15,6 17,2 18,8 20,2 23,9 22,4 23,0 24,4 24,6
X´ac ¯di
.
nh ¯d
’
u
`
’
ong h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau y
x
= ax + b. Sau ¯d´o t`ım ph
’
u
’
ong sai sai
s
´
ˆo th
’
u
.
c nghiˆe
.
m v`a kho
’
ang tin cˆa
.
y 95% cho hˆe
.
s
´
ˆo g´oc c
’
ua ¯d
’
u
`
’
ong h
`
ˆoi qui trˆen.
4. D
¯
o chi
`
ˆeu cao X (cm) v`a tro
.
ng l
’
u
’
o
.
ng Y (kg) c
’
ua 100 ho
.
c sinh, ta ¯d
’
u
’
o
.
c k
´
ˆet qu
’
a sau:
X 145 − 150 150 − 155 155 − 160 160 − 165 165 − 170
Y
35 − 40 3
40 − 45 5 10
45 − 50 14 20 6
50 − 55 15 12 5
55 − 60 6 4
Gi
’
a thuy
´
ˆet X v`a Y c´o m
´
ˆo phu
.
thuˆo
.
c t
’
u
’
ong quan tuy
´
ˆen t´ınh. T`ım c´ac h`am h
`
ˆoi qui
a) y
x
= ax + b;
b) x
y
= cy + d
5. Theo d˜oi l
’
u
’
o
.
ng phˆan b´on v`a n
˘
ang su
´
ˆat l´ua c
’
ua 100 hecta l´ua
’
’
o mˆo
.
t v`ung, ta thu
¯d
’
u
’
o
.
c b
’
ang s
´
ˆo liˆe
.
u sau:
X 120 140 160 180 200
Y
2,2 2
2,6 5 3
3,0 11 8 4
3,4 15 17
3,8 10 6 7
4,2 12
Trong ¯d´o X l`a phˆan b´on (kg/ha) v`a Y l`a n
˘
ang su
´
ˆat l´ua (t
´
ˆan/ha).
a) H˜ay
’
u
´
’
oc l
’
u
’
o
.
ng hˆe
.
s
´
ˆo t
’
u
’
ong quan tuy
´
ˆen t´ınh r.
b) T`ım ph
’
u
’
ong tr`ınh t
’
u
’
ong quan tuy
´
ˆen t´ınh: y
x
= ax + b.
6. D
¯
o chi
`
ˆeu cao v`a ¯d
’
u
`
’
ong k´ınh c
’
ua mˆo
.
t loa
.
i cˆay, ta ¯d
’
u
’
o
.
c k
´
ˆet qu
’
a cho b
’
’
o b
’
ang sau:
X 6 8 10 12 14
Y
30 2 17 9 3
35 10 17 9
40 3 24 16 13
45 6 24 12
50 2 11 22
Không có nhận xét nào:
Đăng nhận xét